Organisms | Evidence |
---|---|
Sus scrofa (pig) | |
unidentified influenza virus | |
Saccharomyces cerevisiae (brewer's yeast) |
Gene Symbol | Donor | Acceptor | Reducing terminal(Acceptor) | Product | Reducing terminal(Product) | Reference |
---|---|---|---|---|---|---|
B4GALT5 | (not applicable) |
|
[beta]-S-pNP |
|
[beta]-S-pNP | |
B3GALT2 | UDP-Gal |
|
Lemieux |
|
Lemieux | |
B4GALT2 | UDP-Gal |
|
Benzyl-[beta] |
|
Benzyl-[beta] | |
B4GALT1 | UDP-Gal |
|
R |
|
R | |
B3GALT5 | UDP-Gal |
|
R |
|
R |
Gene Symbol | Donor | Acceptor | Reducing terminal(Acceptor) | Product | Reducing terminal(Product) | Reference |
---|---|---|---|---|---|---|
B4GALT4 | UDP-Gal |
|
[beta]-1-p-Nitrophenyl |
|
[beta]-1-p-Nitrophenyl | |
B4GALT2 | UDP-Gal |
|
Benzyl-[beta] |
|
Benzyl-[beta] | |
B4GALT1 | UDP-Gal |
|
R |
|
R | |
B4GALT3 | UDP-Gal |
|
p-Nitrophenyl-[beta] |
|
p-Nitrophenyl-[beta] | |
B4GALT5 | UDP-Gal |
|
|
Pathway Name | Organism |
---|---|
Antimicrobial peptides | Drosophila melanogaster |
Antimicrobial peptides | Rattus norvegicus |
Antimicrobial peptides | Danio rerio |
Antimicrobial peptides | Xenopus tropicalis |
Antimicrobial peptides | Gallus gallus |
Antimicrobial peptides | Homo sapiens |
Antimicrobial peptides | Canis familiaris |
Antimicrobial peptides | Dictyostelium discoideum |
Antimicrobial peptides | Bos taurus |
Antimicrobial peptides | Mus musculus |
RES 1b:b-dglc-HEX-1:5 2s:n-acetyl LIN 1:1d(2+1)2n
PubMed ID | Title | First Author | Publication Date | Source |
---|---|---|---|---|
35867186 | Constitutive chitosanase from Bacillus thuringiensis B-387 and its potential for preparation of antimicrobial chitooligomers | Aktuganov GE | 2022 Jul 22 |
|
35737812 | Pathogen-sugar interactions revealed by universal saturation transfer analysis | Buchanan CJ | 2022 Jul 22 |
|
35762884 | Shifting mutational constraints in the SARS-CoV-2 receptor-binding domain during viral evolution | Starr TN | 2022 Jul 22 |
|
35863378 | Organizing structural principles of the IL-17 ligand–receptor axis | Wilson SC | 2022 Jul 21 |
|
35889515 | Structural Insights into the Role of β3 nAChR Subunit in the Activation of Nicotinic Receptors | Giastas P | 2022 Jul 20 |
|
35858452 | Structural basis for high-voltage activation and subtype-specific inhibition of human Nav1.8 | Huang X | 2022 Jul 19 |
|
35849637 | In vitro evolution predicts emerging SARS-CoV-2 mutations with high affinity for ACE2 and cross-species binding | Bate N | 2022 Jul 18 |
|
35887161 | Disruption of O-GlcNAcylation Homeostasis Induced Ovarian Granulosa Cell Injury in Bovine | Wang TF | 2022 Jul 15 |
|
35858383 | Correlation between the binding affinity and the conformational entropy of nanobody SARS-CoV-2 spike protein complexes | Mikolajek H | 2022 Jul 15 |
|
35833347 | Discovery of Selective Nanomolar Inhibitors for Insulin-Regulated Aminopeptidase Based on α-Hydroxy-β-amino Acid Derivatives of Bestatin | Vourloumis D | 2022 Jul 14 |
|
Title | Authors | Source | Publication Date | PubMed ID |
---|---|---|---|---|
Phosphorylation activates master growth regulator DELLA by promoting histone H2A binding at chromatin in Arabidopsis. |
|
Nat Commun | 2024 Sep 3 | 39227587 |
A protein O-GlcNAc glycosyltransferase regulates the antioxidative response in Yersinia pestis. |
|
Nat Commun | 2024 Aug 16 | 39152136 |
Polη O-GlcNAcylation governs genome integrity during translesion DNA synthesis. |
|
Nat Commun | 2017 Dec 5 | 29208956 |
Epithelial Mesenchymal Transition Induces Aberrant Glycosylation through Hexosamine Biosynthetic Pathway Activation. |
|
J Biol Chem | 2016 Jun 17 | 27129262 |
The making of a sweet modification: structure and function of O-GlcNAc transferase. |
|
J Biol Chem | 2014 Dec 12 | 25336649 |
GlyCosmos is a member of the GlySpace Alliance together with GlyGen and Glycomics@ExPASy.
Supported by JST NBDC Grant Number JPMJND2204
Partly supported by NIH Common Fund Grant #1U01GM125267-01
This work is licensed under Creative Commons Attribution 4.0 International
GlyCosmos Portal v4.2.1
Last updated: April 7, 2025